Drilling Fluid Definitions and General Functions

Print Friendly, PDF & Email


Drilling Fluid Definitions and General Functions

Results of research has shown that penetration rate and its response to weight on Drilling Bit and rotary speed is highly dependent on the hydraulic horsepower reaching the formation at the bit. Because the drilling fluid flow rate sets the system pressure losses and these pressure losses set the hydraulic horsepower across the bit, it can be concluded that the drilling fluid is as important in determining drilling costs as all other “controllable” variables combined. Considering these factors, an optimum drilling fluid is properly formulated so that the flow rate necessary to clean the hole results in the proper hydraulic horsepower to clean the bit for the weight and rotary

Drilling Muds and Completion Systems

speed imposed to give the lowest cost, provided that this combination of variables results in a stable borehole which penetrates the desired target. This definition incorporates and places in perspective the five major functions of a drilling fluid.

Cool and Lubricate the Bit and Drill String

Considerable heat and friction is generated at the bit and between the drill string and wellbore during drilling operations. Contact between the drill string and wellbore can also create considerable torque during rotation and drag during trips. Circulating drilling fluid transports heat away from these frictional sites, reducing the chance of premature bit failure and pipe damage. The drilling fluid also lubricates the bit tooth penetration through the bottom hole debris into the rock and serves as a lubricant between the wellbore and drill string, reducing torque and drag.

Clean the Bit and the Bottom of the Hole

If the cuttings generated at the bit face are not immediately removed and started toward the surface, they will be ground very fine, stick to the bit, and in general retard effective penetration into uncut rock.

Suspend Solids and Transport Cuttings and Sloughing to the Surface Drilling fluids must have the capacity to suspend weight materials and drilled solids during connections, bit trips, and logging runs, or they will settle to the low side or bottom of the hole. Failure to suspend weight materials can result in a reduction in the drilling fluids density, which can lead to kicks and potential of a blowout.

The drilling fluid must be capable of transporting cuttings out of the hole at a reasonable velocity that minimizes their disintegration and incorporation as drilled solids into the drilling fluid system and able to release the cuttings at the surface for efficient removal. Failure to adequately clean the hole or to suspend drilled solids can contribute to hole problems such as fill on bottom after a trip, hole pack-off, lost returns, deferentially stuck pipe, and inability to reach bottom with logging tools.

Factors influencing removal of cuttings and formation sloughing and solids suspension include

  • Density of the solids
  • Density of the drilling fluid
  • Rheological properties of the drilling fluid
  • Annular velocity
  • Hole angle
  • Slip velocity of the cuttings or sloughings

Stabilize the Wellbore and Control Subsurface Pressures

Borehole instability is a natural function of the unequal mechanical stresses and physical-chemical interactions and pressures created when supporting material and surfaces are exposed in the process of drilling a well. The drilling fluid must overcome the tendency for the hole to collapse from mechanical failure or from chemical interaction of the formation with the drilling fluid. The Earth’s pressure gradient at sea level is 0.465 psi/ft, which is equivalent to the height of a column of salt water with a density (1.07 SG) of 8.94 ppg.

In most drilling areas, the fresh water plus the solids incorporated into the water from drilling subsurface formations is sufficient to balance the formation pressures. However, it is common to experience abnormally pressured formations that require high-density drilling fluids to control the formation pressures. Failure to control downhole pressures can result in an influx of formation fluids, resulting in a kick or blowout. Borehole stability is also maintained or enhanced by controlling the loss of filtrate to permeable formations and by careful control of the chemical composition of the drilling fluid.

Most permeable formations have pore space openings too small to allow the passage of whole mud into the formation, but filtrate from the drilling fluid can enter the pore spaces. The rate at which the filtrate enters the formation depends on the pressure differential between the formation and the column of drilling fluid and the quality of the filter cake deposited on the formation face. Large volumes of drilling fluid filtrate and filtrates that are incompatible with the formation or formation fluids may destabilize the formation through hydration of shale and/or chemical interactions between components of the drilling fluid and the wellbore.

Drilling fluids that produce low-quality or thick filter cakes may also cause tight hole conditions, including stuck pipe, difficulty in running casing, and poor cement jobs.

Assist in the Gathering of Subsurface Geological Data and Formation Evaluation

Interpretation of surface geological data gathered through drilled cuttings, cores, and electrical logs is used to determine the commercial value of the zones penetrated. Invasion of these zones by the drilling fluid, its filtrate (oil or water) may mask or interfere with interpretation of data retrieved or prevent full commercial recovery of hydrocarbon.

Other Functions

In addition to the functions previously listed, the drilling fluid should be environmentally acceptable to the area in which it is used. It should be noncorrosive to tubulars being used in the drilling and completion operations. Most importantly, the drilling fluid should not damage the productive formations that are penetrated.

The functions described here are a few of the most obvious functions of a drilling fluid. Proper application of drilling fluids is the key to successfully drilling in various environments.


a generalized classification of drilling fluids can be based on their fluid phase, alkalinity, dispersion, and type of chemicals used in the formulation and degrees of inhibition. In a broad sense, drilling fluids can be broken into five major categories.

Freshwater Muds—Dispersed Systems

The pH value of low-pH muds may range from 7.0 to 9.5. Low-pH muds include spud muds, bentonite-treated muds, natural muds, phosphatetreated muds, organic thinned muds (e.g., red muds, lignite muds, lignosulfonate muds), and organic colloid–treated muds. In this case, the lack of salinity of the water phase and the addition of chemical dispersants dictate the inclusion of these fluids in this broad category.

Inhibited Muds—Dispersed Systems

These are water-base drilling muds that repress the hydration and dispersion of clays through the inclusion of inhibiting ions such as calcium and salt. There are essentially four types of inhibited muds: lime muds (high pH), gypsum muds (low pH), seawater muds (unsaturated saltwater muds, low pH), and saturated saltwater muds (low pH). Newer-generation inhibited-dispersed fluids offer enhanced inhibitive performance and formation stabilization; these fluids include sodium silicate muds, formate brine-based fluids, and cationic polymer fluids.

Low Solids Muds—Nondispersed Systems

These muds contain less than 3–6% solids by volume, weight less than 9.5 lb/gal, and may be fresh or saltwater based. The typical low-solid systems are selective flocculent, minimum-solids muds, beneficiated clay muds, and low-solids polymer muds. Most low-solids drilling fluids are composed of waterwith varying quantities of bentonite and a polymer. The difference among low-solid systems lies in the various actions of different polymers.

Nonaqueous Fluids

Invert Emulsions Invert emulsions are formed when one liquid is dispersed as small droplets in another liquidwith which the dispersed liquid is immiscible. Mutually immiscible fluids, such as water and oil, can be emulsified by shear and the addition of surfactants. The suspending liquid is called the continuous phase, and the droplets are called the dispersed or discontinuous phase. There are two types of emulsions used in drilling fluids:

oil-in-water emulsions that have water as the continuous phase and oil as the dispersed phase and water-in-oil emulsions that have oil as the continuous phase and water as the dispersed phase (i.e., invert emulsions). Oil-Base Muds (nonaqueous fluid [NAF]) Oil-base muds contain oil (refined from crude such as diesel or synthetic-base oil) as the continuous phase and trace amounts of water as the dispersed phase. Oil-base muds generally contain less than 5% (by volume) water (which acts as a polar activator for organophilic clay), whereas invert emulsion fluids generally have more than 5% water in mud. Oil-base muds are usually a mixture of base oil, organophilic clay, and lignite or asphalt, and the filtrate is all oil.

1. Drilling Equipment and Operation.
2. drilling Operation.